Handling of Dredged Material in the Netherlands

H.P. Laboyrie M.Sc. Eng (C.E. Delft)

Head Environmental Department
Civil Engineering Division
Dutch Ministry of Transport, Public Works and Water Management
Contents

• Introduction
• Situation in the Netherlands
• Overview on treatment and disposal options
• Dutch policy on treatment and disposal
• Conclusions and recommendations
Introduction

• Frequent dredging necessary in delta area
• Reasons for dredging
 – Shipping
 – Water discharge
 – Environment
• Large amounts of DM 25-30 Mm3/yr
 – Mainly from maintenance dredging mainport Rotterdam
Present destinations

- Relocation in sea: 66%
- Relocation on land: 17%
- Treatment and reuse: 2%
- Disposal: 15%
Problems with destinations for DM

- Relocation at sea (90%): environmental restraints
- Relocation on land (30%): lack of space and acceptance
- Treatment: expensive, small scale, no market for products
- New CDF’s: Nimby

Destinations for DM become more scarce and more expensive.

Largest problem DM from fresh waters especially in urban areas.
Ripening fields and sedimentation basins near CDF Slufter
Technically feasible treatment chains

1) disposal

2) ripening and landfarming

3) sand-separation
 - silt fraction
 - coarse (sand) fraction

4) dewatering
 - stabilization

5) thermal immobilization
 - silt fraction
 - coarse (sand) fraction

Available for the following types of DM (grain sizes, contamination):
1) fine, cocktail
2) (moderately) sandy, cocktail
3) (moderately) sandy, PAK/oil

Depot/CDF

Aggregate, sand, soil

Ripening or treatment

Art. gravel, art. basalt, bricks, etc.
Techniques

• Simple techniques
 Sandseparation/ripening/landfarming/bioremediation/
 chemical immobilisation or stabilisation
 – restricted use depending on qualities CDM, standards for building materials and market

• Advanced techniques: thermal immobilisation
 – after pretreatment also for heavily contaminated DM
Simple techniques
Thermal immobilisation
Problem analysis of treatment

- Treatment up to now very limited and small-scale
 - higher costs of treatment compared with disposal
 - no guaranteed or continuous supply for treatment to justify the high investments
 - lack of market for products as secondary raw materials
 - limitations for beneficial use due to standards for the products
R&D on treatment and disposal

- Conclusion for Dutch policy 1998:
 - Only sand separation is feasible
 - Confined disposal is a environmental sound solution: several large CDF’s were planned
Developments

- Public resistance against new CDF’s (NIMBY)
- Private sector: Lobby for treatment
- Political pressure to carry out a pilot project on large scale treatment
- National survey of feasible techniques and costs by AKWA in close co-operation with the private sector
Outcome of national survey

- Treatment is in general more expensive than disposal
- More treatment should not be at the expense of dredging
- More treatment means that more budget is needed
- Highest efficiency with ‘simple treatment’ in combination with disposal
- If thermal immobilization is introduced then for hot spots
- Treatment of all DM is too expensive; disposal remains necessary
Political decisions

- Dutch policy is aimed at more treatment based on
 - less disposal
 - production of building materials
- More budget for treatment of CDM during test period of 4 years
- Confined disposal (and CDF’s) remain necessary (in combination with treatment)
- Ultimate goal is a structural reversal to more treatment if the test period is successful
Extra budget

€ 73 million

€ 41 million: Subsidy for treatment

€ 32 million: pilot project for treatment
Policy instruments to stimulate treatment

- Subsidy for treatment of CDM
- Environmental tax on the disposal of “treatable” DM (at the moment DM >60% sand)
- Creation of markets for products from treatment
 - adaptation of legislation on building materials
 - application of products in governmental projects
Interrelation policy instruments

Degree of contamination

Class 4

Class 3

Class 2

Subsidy for treatment

Environmental tax on disposal

Adapting Build.Act, stimulation sale, creation of markets

0%

60%

100%

Sandpercentage
Conclusions for the Netherlands

- Treatment of CDM is a political goal in order to reduce disposal and produce building materials.
- Dutch policy measures are taken to promote treatment during a test period of 4 years.
- It is now up to the private sector to take the opportunities and demonstrate that treatment is feasible.
- Future decisions depend on the results of the test period.
General conclusions

• Source control is needed to reach a sediment quality in the future, which does not pose a risk to aquatic systems or upland use.

• In the meantime, treatment and confined disposal remain necessary.

• Investment in source control upstream is often more economical than treatment downstream.

• If the higher costs for treatment are not compensated this may lead to less dredging.

• Confined disposal will remain a necessary option.
General recommendations

- An adequate legal framework for the handling of sediments is needed (basis EWFD)
- If treatment is the political goal consider
 - (temporary) financial impulse
 - increase of budgets for dredging to compensate for the higher costs of treatment
 - create markets for products of treatment
 - adaptation of legislation for beneficial use